Appendix

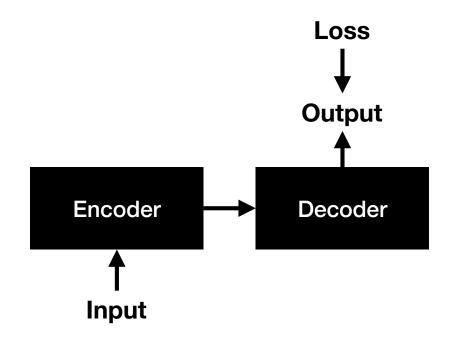
Pre-training Encoder-Decoders

Cornell CS 5740: Natural Language Processing

Yoav Artzi, Spring 2023

Encoder-decoder

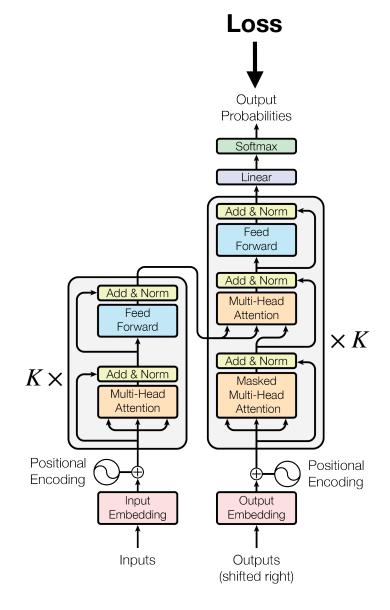
- The model is composed of two components
- Bidirectional encoder to process the input
- Autoregressive decoder to generate output
- Training is usually done with loss on the output
 - Propagates into the decoder and through it to the encoder



Encoder-decoder

With Transformers

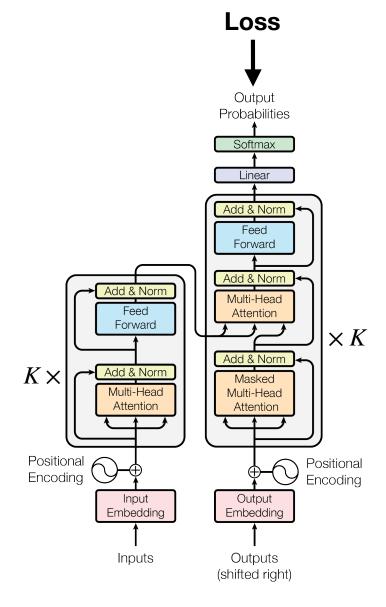
- The model is composed of two components
- Bidirectional encoder to process the input
- Autoregressive decoder to generate output
- Training is usually done with loss on the output
 - Propagates into the decoder and through it to the encoder



Encoder-decoder

With Transformers

- Bidirectional encoder to process the input
- Autoregressive decoder to generate output
- Why does this structure make sense?



Encoder-decoder Pre-training The BART Recipe

- An encoder-decoder (sequence-to-sequence) pre-trained model
- Extends the BERT approach to encoder-decoder

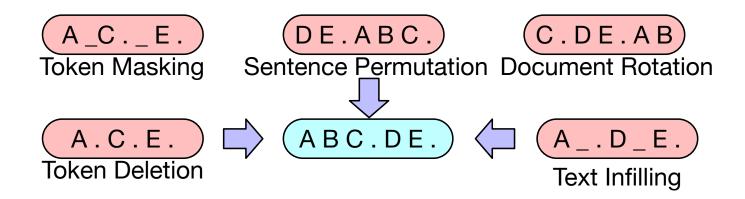
BARTBERT Reminder

- Encoder-only Transformer
- Trained on raw data
- Two self-supervised objects:
 - Masked LM
 - Next-sentence prediction
- Transformed the NLP task landscape if you have enough data, fine-tuned BERT works really well

- How does the BERT learning approach adapts to an encoderdecoder architecture?
 - Output is generated by decoder, and the loss is on the output
 - Input is a sequence of tokens

Denoising Self-supervised Objective

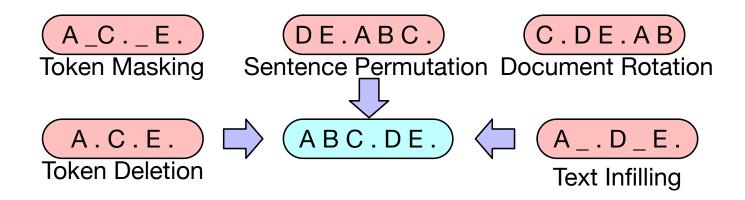
Corrupt the input following five different recipes



- Try to recover the pre-corrupted input by generating it using the decoder
- Train on a lot of raw text data, just like with BERT
- How to compute the loss? Loss can be computed using "teacher forcing"

Denoising Self-supervised Objective

Corrupt the input following five different recipes



- Try to recover the pre-corrupted input by generating it using the decoder
- How to compute the loss? Loss can be computed using "teacher forcing"

What Do We Get?

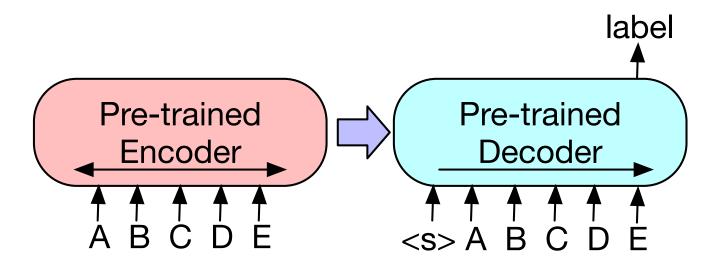
- BERT: a pre-trained encoder
- BART: pre-trained decoder and encoder
 - Can use both
 - Or can use only the decoder wherever we would use BERT

How to Use?

- Similar to BERT: fine-tune for the end task
- Very natural for summarization
 - Because input and output vocabulary are the same
- How can we use for classification
- What about machine translation?

Classification

- The input is given the encoder
- The same input is forced decoded in the decoder via "teacher forcing"
- The representation from the final decoder hidden state is given to a classification head

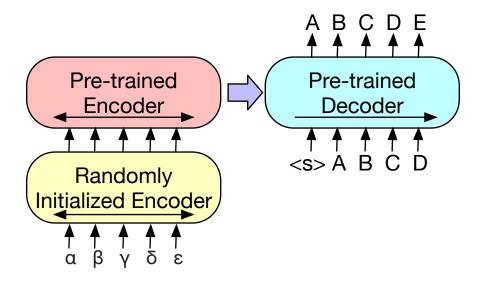


Machine Translation

- In MT, the input and output vocabularies are different
- When is that a problem with BART?
- How can we solve it?

Machine Translation

- In MT, the input and output vocabularies are different
- When is that a problem with BART?
- How can we solve it?
- Add a small pre-encoder encoder to replace the BART input embeddings with computed embeddings



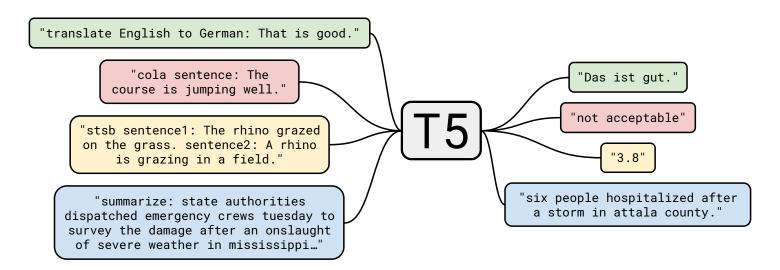
Performance

- Can do anything that BERT does
- But can also do generation tasks (e.g., summarization)

Model	SQuAD 1.1 F1	MNLI Acc	ELI5 PPL	XSum PPL	ConvAI2 PPL	CNN/DM PPL
BERT Base (Devlin et al., 2019)	88.5	84.3	-	-	-	-
BART Base						
w/ Token Masking	90.4	84.1	25.05	7.08	11.73	6.10
w/ Token Deletion	90.4	84.1	24.61	6.90	11.46	5.87
w/ Text Infilling	90.8	84.0	24.26	6.61	11.05	5.83
w/ Document Rotation	77.2	75.3	53.69	17.14	19.87	10.59
w/ Sentence Shuffling	85.4	81.5	41.87	10.93	16.67	7.89
w/ Text Infilling + Sentence Shuffling	90.8	83.8	24.17	6.62	11.12	5.41

Encoder-decoder Pre-training The T5 Recipe

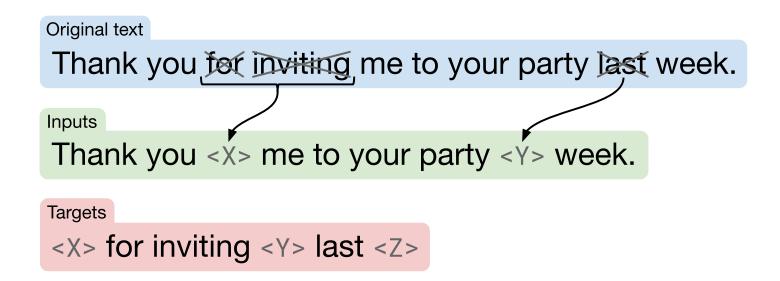
- Concurrent and similar to BART
- Also adopted the text-to-text approach for all NLP tasks



T5

Pretraining

- Pretraining is similar to the denoising objective of BART:
 - Input: text with gaps (phrases removed)
 - Output: sequence of phrases to fill the gaps



T5

Results

- T5 was trained on one of the first very large corpora: 750GB of text, with pre-training using 2³⁵ tokens
- First to show the impact of data scale
- Why did they repeat the smaller scale datasets?

Number	of tokens	Repeats	GLUE	CNNDM	SQuAD	SGLUE	EnDe	EnFr	EnRo
★ Full data	set	0	83.28	19.24	80.88	71.36	26.98	39.82	27.65
2^{29}		64	82.87	19.19	$\boldsymbol{80.97}$	72.03	26.83	39.74	27.63
2^{27}		256	82.62	$\boldsymbol{19.20}$	79.78	69.97	27.02	39.71	27.33
2^{25}		1,024	79.55	18.57	76.27	64.76	26.38	39.56	26.80
2^{23}		4,096	76.34	18.33	70.92	59.29	26.37	38.84	25.81

BART and T5

Takeaways

- BART and T5 are very useful for all sorts of sequence-tosequence tasks with language
 - T5 comes in different sizes
 - There are various customization (e.g., CodeT5)
- Extended the generalizations conclusions from BERT, and demonstrated the impact of data scale

Acknowledgements

Slides are based on Greg Durrett's CS 388 slides at UT Austin